REPORT ON

GEOTECHNICAL INVESTIGATIONS

FOR THE PROPOSED

G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter

at

Bhagalpur DIET Bhagalpur

Your Letter No.- BSEIDC/Tech/1960/2018-7138 Patna, Dated - 02.09.2023

Submitted to The Chief Engineer BSEIDC, Patna

September, 2023

BIHAR FOUNDATION CONSULTANTS

[A unit of Baidyanath Foundation Consultants Pvt. Ltd.] Having an

NABL Accredited / ISO 9001: 2015 Certified Laboratory Ganga Darshan Apartment, Flat No. 403.

West of Sadaquat Ashram, Patna - 10

[e-mail: bifcon.pat@gmail.com, Phone No: + 91 9431222149]

G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

Bihar Foundation Consultants, Ganga Darshan Apartment, Patna -10. [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

PN -230909

CONTENTS

<u>S1.No.</u>	<u>Description</u>	<u>Page No.</u>
1	Introduction	1
2	Field Work	1
3	Laboratory Test	2
4	Presentation of Test Results	2
5	Soil Stratification	2
6	Foundation Analysis	2
7	Recommendations	3-4

Appendix

[Containing Figures and Tables]

- A. Bore Holes Location Map
- B. Field Test Observations & Laboratory Test Results
- C. Graph of Grain size Analysis
- D. Triaxial shear / Direct shear strength test curves
- E. `e-log p' Curves from Consolidation Tests
- F. Sample calculation of pile
- G. Copy of Work Oder

Report on Sub Soil Investigations for the Proposed Construction of G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

1. INTRODUCTION

The subsoil investigations reported herein were taken up (vide W.O. No. BSEIDC/Tech/1960/2018-7138 Patna, Dated – 02.09.2023 to find out the nature of subsoil at the site of the proposed construction and to recommend the capacity and type of its foundation. After certain tests on the soil, as detailed below, the desired recommendations have been made on **page 3-4** of this Report.

2. FIELD WORK

The fieldwork consisted of sinking bore holes, collecting soil samples and conducting the necessary field tests.

2.1. Boring

Taking guidance from IS: 1892, 150 mm diameter bore holes were sunk at locations shown in the bore hole location map.

2.2 Sampling

2.2.1 Undisturbed Soil Samples

Open drive samplers of 100-mm diameter and about 450-mm length were used for obtaining undisturbed samples of cohesive soils. The collection, sealing, labeling and transportation of the samples to the laboratory were done as per the IS guide-lines.

2.2.2 Disturbed Soil Samples

Disturbed soil samples were collected at suitable intervals of depth (not more than 2.5 m) and at all depths of change in the nature of the subsoil. These samples were sealed in polythene bags with proper identification labels.

2.3 Field Tests

2.3.1 Standard Penetration Tests (SPT)

These tests were conducted as per IS: 2131 – 1963. The depth interval between two consecutive tests was 1 to 1.5 m. The tests were located in between the levels at which undisturbed soil samples were collected.

Report on Sub Soil Investigations for the Proposed Construction of G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

3. LABORATORY TESTS

Some or all of the following laboratory tests, as necessary, were done on the collected soil samples. Representative soil samples were selected for this from the different soil strata encountered during boring. The tests were performed as per the relevant Indian Standard Codes of Practice.

- (a) Natural moisture content
- (b) Bulk density
- (c) Grain size analysis (using sieves and / or hydrometer)
- (d) Specific gravity of soil solids
- (e) Atterberg's limit tests (liquid, plastic and shrinkage limits)
- (f) Shear Tests:
 - [I] Triaxial compression test (unconsolidated undrained), generally for fine- grained soils
 - [II] Unconfined compression tests, only on cohesive soils
 - [III] Direct shear tests, generally for coarse-grained soils
- (g) Other tests as and when required.

4. PRESENTATION OF TEST RESULTS

The field and laboratory test results are given in the **Appendix B.**

5. SOIL STRATIFICATION

The results of field tests in three bore holes sunk at the site [vide Location Sketch in App. A] and the results of laboratory tests conducted on the collected soil samples indicate that the soil stratification at the site is as describe below.

The subsoil in all 3 BH's is sandy silty clay / silty clay [type CL/CI] up to the investigated depth of 10.5 m bgl. It is also brick bats up to about 3.0 m in BH 1 and BH 3. The subsoil is also gritty at some locations and depths.

Ground water table was struck at about 3.60 m to 3.70 m depth below GL in September, 2023. It is subject to seasonal variations.

6. FOUNDATION ANALYSIS

The safe capacity of foundation of any type and size may be determined on the basis of the soil data given in this Report by using the standard methods of foundation design and following the relevant Indian Standard Codes.

7. RECOMMENDATIONS

The design of the foundation for the proposed structure depends on the nature of both [a] the subsoil and [b] the structure.

The subsoil in all 3 BH's is sandy silty clay / silty clay [type CL/CI] up to the investigated depth of 10.5 m bgl. It is also brick bats up to about 3.0 m in BH 1 and BH 3. The subsoil is also gritty at some locations and depths.

Ground water table was struck at about 3.60 m to 3.70 m depth below GL in September, 2023. It is subject to seasonal variations.

Hence,

- 1. The subsoil is soft up to about 3.0 m in BH 2 and BH 3. Hence the proposed structure may be provided with shallow foundation at a depth of 4.0 m or more.
- 2. U/r piles of lengths 4.0 m to 10.0 m may be used. The diameter of the bulb should be two times the stem diameter. The stem diameters may be taken as 0.25 m, 0.30 m, 0.40 m, and 0.50* m.

* 0.5 m stem diameter shall be used only for U/R piles of lengths 6 m or more.

By way of example, the values of safe capacities of each one of the above two types of foundations of the above mentioned sizes and depths have been calculated (vide Samples of Calculations in Appendix F) and are tabulated below.

Table 1: Allowable Net Bearing Pressures [qna] and Settlements Expected [s]

Depth (m) below Ground Level	Width (m)	Net allowa	ble bearing pressu	re (t/m²)	Maximum expected settlement (mm)
	(111)	Strip footing	Raft footing		
	2	6.0	7.1		75
4.0	3	5.5	6.5		75
	10			5.7	100
	2	7.8	9.4		75
4.5	3	7.1	8.4		75
	10	•••		7.3	100

Report on Sub Soil Investigations for the Proposed Construction of G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

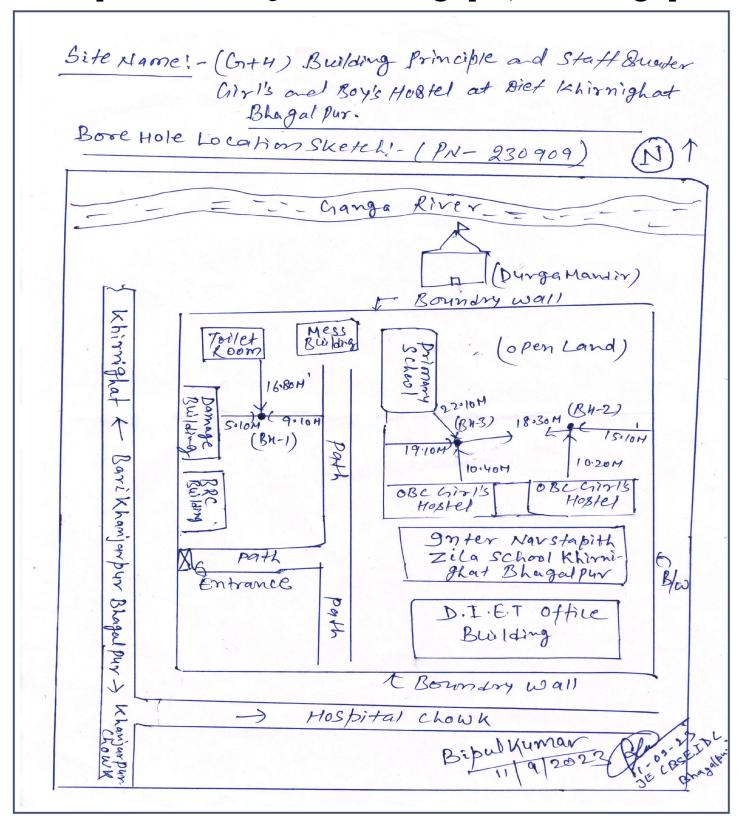
Table 2. Safe Capacities of U/R Piles [Factor of safety = 3.0]
[Bulb diameter = 2.0 times the shaft diameter]

Pile length below pile Cap	Safe Pile Capacity [tonnes] (SUBJECT TO CHECKING FOR SLENDERNESS RATIO**) Stem diameter (m)											
(m)	0.	25		30		40	0.50					
	One bulb	Two bulbs	One bulb	Two bulbs	One bulb	Two bulbs	One bulb	Two bulbs				
4.0	1.7	2.0	2.3	2.8	3.8	4.7	*	*				
6.0	2.8	3.4	3.8	4.7	6.3	7.7	9.2	11.6				
8.0	5.1	6.1	6.8	8.2	10.8	13.3	15.8	19.7				
10.0	7.0	8.3	9.2	11.2	14.5	18.0	20.9	26.4				

* 0.5 m stem diameter shall be used only for U/R piles of lengths 6 m or more.

- (a) <u>for cohesive soils</u> may be estimated from the following empirical relation given in IS: 2950-1981 (Second Revision) Table 1.: $k (kN/m^3) = 240 c$, where $c (kN/m^2)$ is the value of cohesion of the soil at the concerned depth.
- (b) for cohesionless soils the IS Code shall be consulted

Notes:

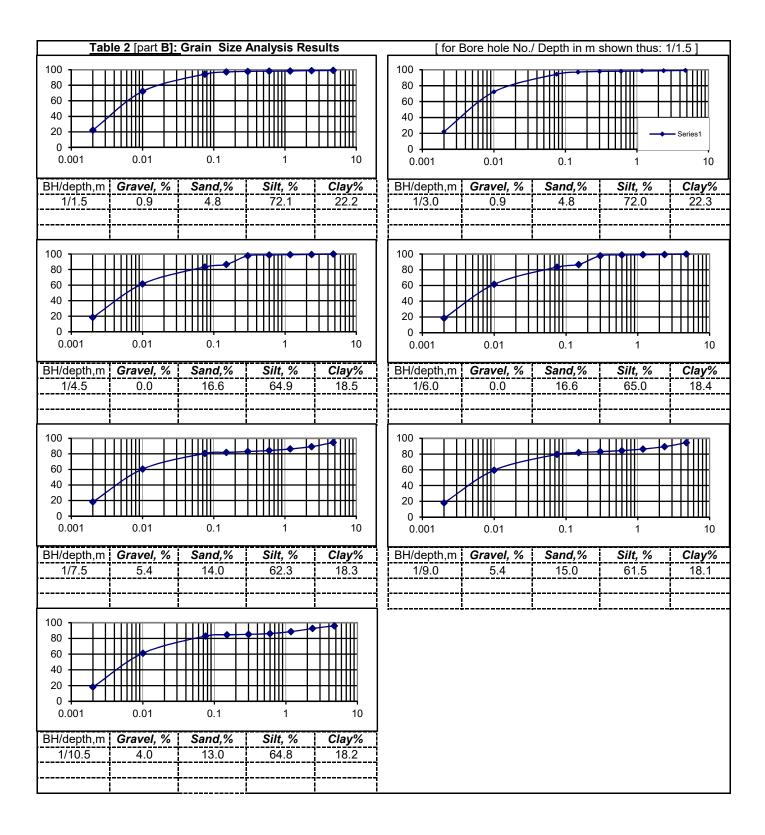

- 1. If a subsoil condition much different from those reported herein is met with during foundation trenching or piling, suitable steps should be taken.
- 2. If concreting of piles is to be done below water table, DMC and tremie method should be adopted.
- 3. If u/r piles are provided, care should be taken to ensure proper formation of bulbs.
- 4. Shallow foundations or pile caps should be isolated from the surrounding expansive soil by layers of compacted local sand.
- 5. As per the provisions of the IS Code, an appropriate number of piles must be subjected to routine load tests to check the veracity of the above recommended values of the safe capacities of piles.

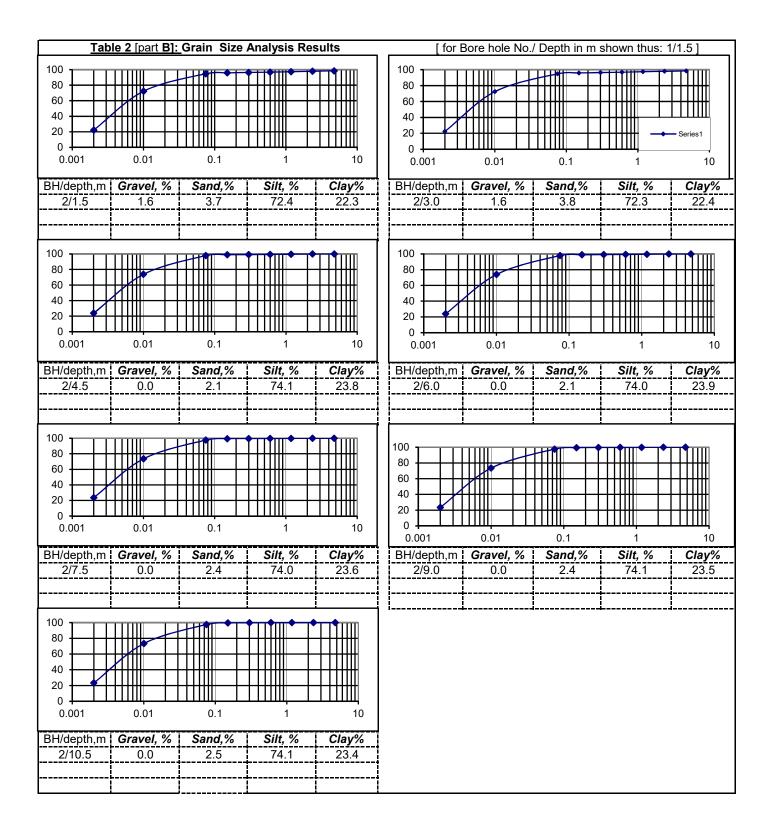
For Bihar Foundation Consultants

(Prof. C.N. Sinha, Dr.-Ing., FIE) Chief Consultant.

^{**}For a preliminary checking of the slenderness ratio, the modulus of subgrade reaction (k)

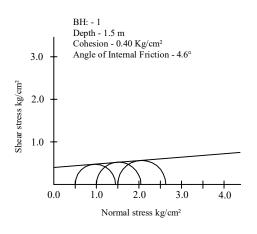
G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

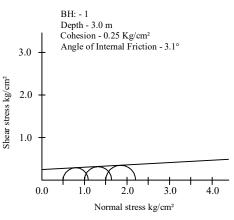


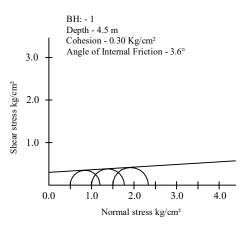

Bihar Foundation Consultants, Ganga Darshan Apartment, Patna -10. [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

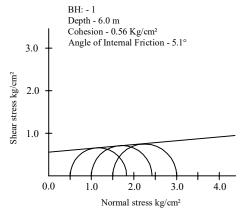
NAME O	F WORK	: Sub soil Inv	estigation for C/O				BORING	FINISH DA	ATE : 10.0	9.2023		WATER 1	ABLE	: 3.70 m bg	ıl	
			, Educational Building and Principal-cum- DIET Bhagalpur				BORING	METHOD	: Rotary							
	OLE NO. :		Site Incharge - Bipul Kumar				TERMINA	ATION DEF	PTH : 10.5	i m		RECORD	OON : 10.09.2023		023	
		SPT 'N'		Depth(m)										Shear Test		lex (C _c)
Depth Below GL (m)	Sample No.	Value observation	Visual Description of Soil with IS Classification	Бері	to to Thickness (T)		Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	Natural Moisture Content (%)	Specific Gravity	Type of Test	Cohesion, c (kg/cm2)	Friction Angle, φ°	Compression Index (C _c)
Dep	Sarr	Obsr.		from	to	Thic	Liqu	Plas	Plas	Bulk	Natu (%)	Spe	Туре	Coh kg/c	Frict	Corr
1.0				0.0	0.0											
1.5	S1	8	Greyish silty clay, CL			3.0	28.4	19.0	9.4	1.98	27.3	2.70		0.40	4.6	
2.5			with brick bats			3.0										
3.0	S2	5			3.0					1.95	29.2	2.69		0.25	3.1	0.170
4.0			Greyish sandy silty clay, CL	3.0		1.5										
4.5	S3	6	Gleyish sandy silty day, GL		4.5	1.5	29.1	20.1	9.0	1.96	28.6	2.70		0.30	3.6	0.160
5.5			Yellowish reddish sandy silty clay, CL	4.5		1.5										
6.0	S4	12	Tellowish reduish sandy silty day, OL		6.0	1.5				2.01	25.3	2.70		0.56	5.1	
7.0			Yellowish reddish sandy silty clay, CL	6.0		1.5										
7.5	S5	15	with grits		7.5	1.0	30.8	20.6	10.2	2.01	25.4	2.70		0.63	5.1	
8.5				7.5												
9.0	S6	17	Reddish sandy silty clay, CL			3.0				2.02	24.7	2.71		0.67	5.1	
10.0			with grits			3.0										
10.5	S7	16			10.5					2.02	25.1	2.71		0.65	5.1	

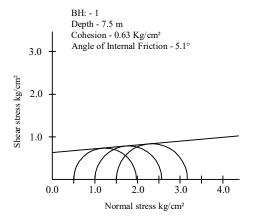
NAME O	WORK	: Sub soil Inv	estigation for C/O				BORING	FINISH D	ATE : 10.0	9.2023		WATER 1	ΓABLE	: 3.60 m bg	jl	
			, Educational Building and Principal-cum-				BORING	METHOD	: Rotary							
	DLE NO. :		DIET Bhagalpur Site Incharge - Bipul Kumar				Į		PTH : 10.5	5 m		PECOPO	ECORD ON : 10.09.2023			
BOKE H	JLE NO	2	Site ilicharge - Dipul Kumai		<u> </u>		I EINIMA	TION DE	1111 . 10.3	1111		RECORD	ON	. 10.09.2	.023	
(m)		SPT 'N' Value		Doni	Depth(m)				9	/cm3)	Content			Shear Te	st	dex (C _c)
Depth Below GL (m)	ple No.	observation	Visual Description of Soil with IS Classification	Бер	ui(iii)	Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	Natural Moisture (%)	Specific Gravity	Type of Test	Cohesion, c (kg/cm2)	Friction Angle, φ°	Compression Index (C _c)
Dept	Sample	Obsr.		from	to	Thick	Liqui	Plast	Plast	Bulk	Natu (%)	Spec	Туре	Cohe kg/cr	Fricti	Com
1.0				0.0												
1.5	S1	3	Greyish silty clay, CL			3.0				1.93	29.5	2.68		0.15	2.5	
2.5			with grits			3.0										
3.0	S2	4			3.0		29.1	22.4	6.7	1.94	29.4	2.69		0.20	2.8	0.175
4.0				3.0												
4.5	S3	6	Yellowish reddish silty clay, CL			3.0				1.96	28.6	2.70		0.30	3.6	0.160
5.5			renowish reduish silty day, or			3.0										
6.0	S4	9			6.0		26.6	20.9	5.7	1.99	26.7	2.70		0.44	5.0	
7.0				6.0												
7.5	S5	10								2.00	26.2	2.70		0.48	5.0	
8.5			Reddish silty clay, CL			4.5										
9.0	S6	14				7.5	30.8	20.9	9.9	2.01	25.4	2.71		0.61	5.1	
10.0																
10.5	S7	16			10.5					2.02	25.1	2.71		0.65	5.1	

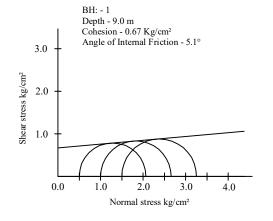

NAME O	F WORK	: Sub soil Inv	estigation for C/O				BORING	FINISH DA	ATE : 11.0	9.2023		WATER 1	TABLE	: 3.70 m bg	jl			
			, Educational Building and Principal-cum- DIET Bhagalpur				BORING	METHOD	: Rotary									
	OLE NO. :		Site Incharge - Bipul Kumar				TERMINA	ATION DEF	PTH : 10.5	5 m		RECORD	ON	: 11.09.2	023			
(m)		SPT 'N'		Danie	Depth(m)											Shear Te		lex (C _c)
Depth Below GL (m)	Sample No.	Value observation	Visual Description of Soil with IS Classification	Бері			Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	Natural Moisture Content (%)	Specific Gravity	Type of Test	Cohesion, c (kg/cm2)	Friction Angle, φ°	Compression Index (C _c)		
Dep	Sarr	Obsr.		from	to	Thickness (m)	Liqu	Plas	Plas	Bulk	Natu (%)	Spe	Туре	Coh kg/c	Frict	Con		
1.0				0.0														
1.5	S1	2	Greyish silty clay, CL			3.0	29.6	20.6	9.0	1.93	29.7	2.68		0.10	2.1			
2.5			with brick bats		3.0													
3.0	S2	3			3.0					1.93	29.5	2.68		0.15	2.5			
4.0				3.0														
4.5	S3	5					27.8	20.8	7.0	1.95	29.2	2.69		0.25	3.1	0.170		
5.5			Reddish silty clay, CL			4.5												
6.0	S4	8	Neudish sity day, of			4.5				1.98	27.3	2.70		0.40	4.6			
7.0																		
7.5	S5	9			7.5		28.2	20.7	7.5	1.99	26.7	2.70		0.44	5.0			
8.5				7.5														
9.0	S6	12	Reddish yellowish silty clay, CL			3.0				2.01	25.3	2.70		0.56	5.1			
10.0						3.0												
10.5	S7	14			10.5		28.9	22.3	6.6	2.01	25.4	2.71		0.61	5.1			

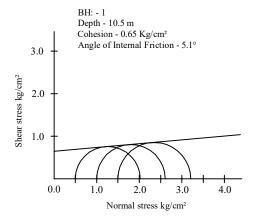






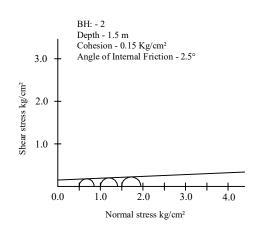

TRIAXIAL / DIRECT SHEAR TEST PLOTS

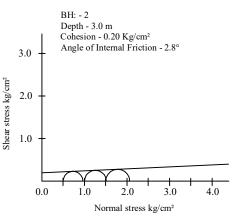


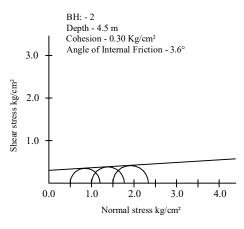


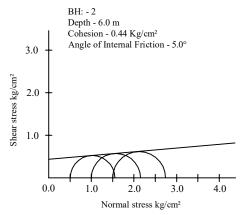
Appendix -

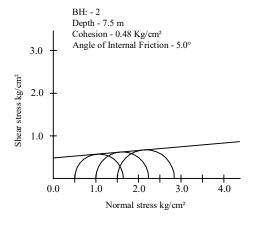
D1

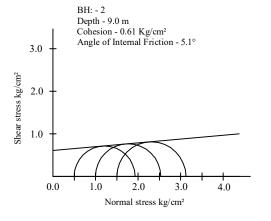

Bihar Foundation Consultants, [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

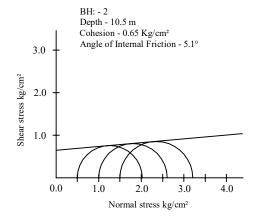

Project No. 220909


For the Proposed


G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

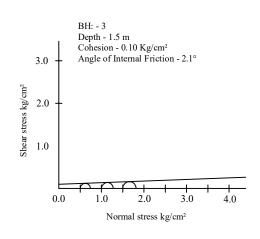

TRIAXIAL / DIRECT SHEAR TEST PLOTS

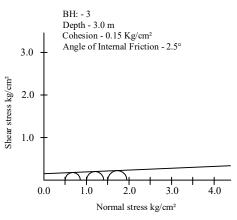


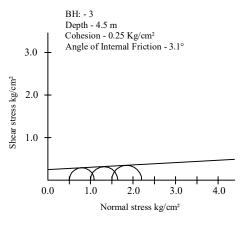


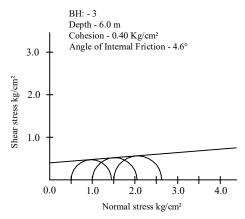
Appendix -

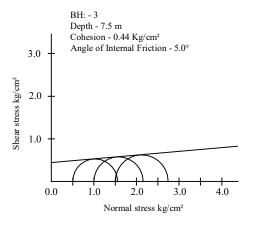
D2

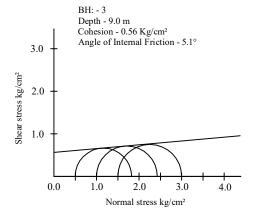

Bihar Foundation Consultants, [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

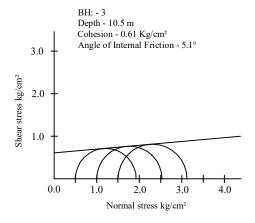

Project No. 220909


For the Proposed


G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

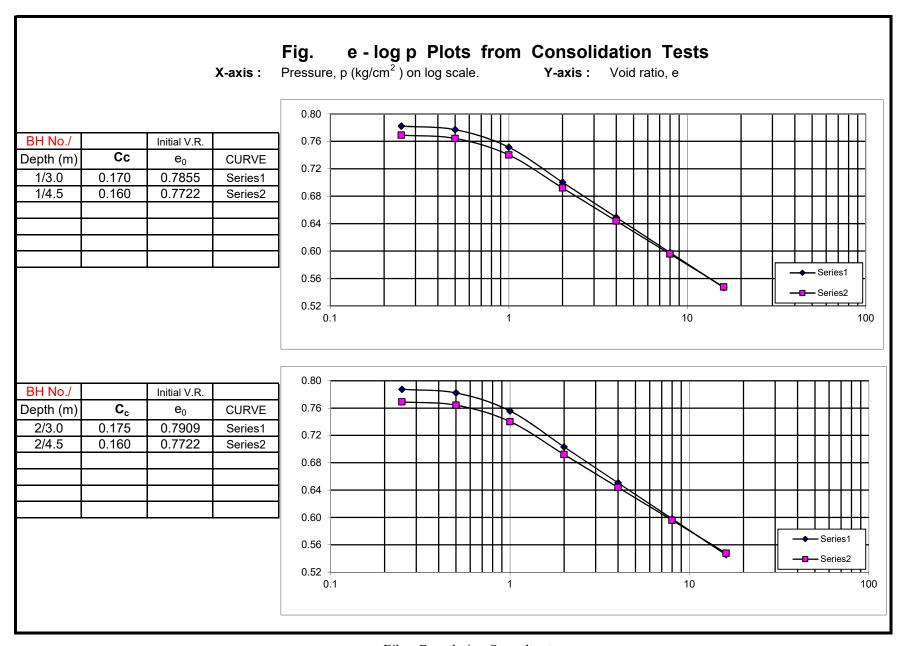

TRIAXIAL / DIRECT SHEAR TEST PLOTS



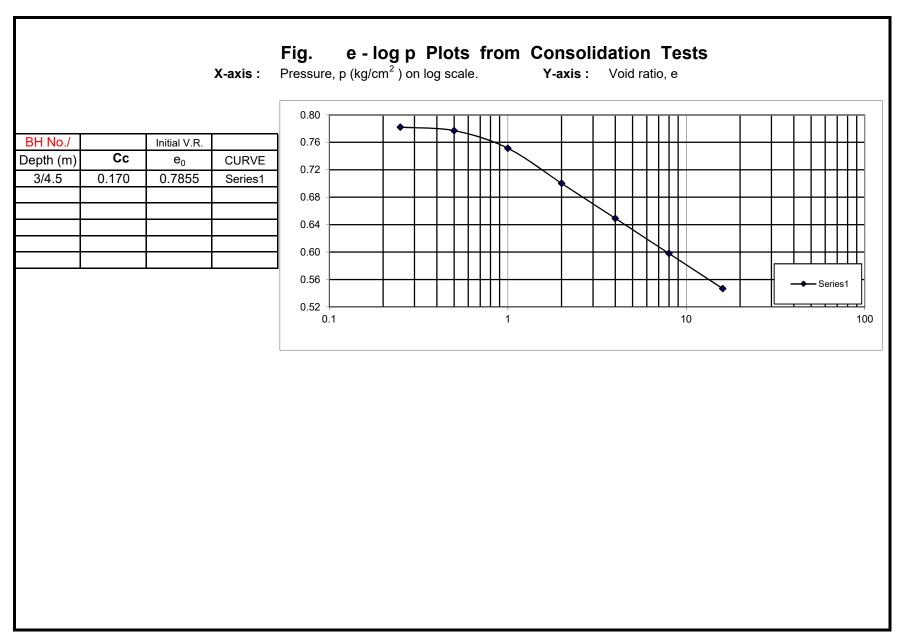


[

Appendix -


D3

Bihar Foundation Consultants, [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]


Project No. 220909

For the Proposed

G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit: Baidyanath Foundation Consultants Pvt. Ltd.,]

Report on Sub Soil Investigations for the proposed G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

SAMPLE CALCULATION OF BEARING CAPACITY OF SHALLOW FOUNDATION

The determination of the **net safe bearing capacity**, q_{ns} , is done on the basis of the shear failure criterion after dividing the value of the **net ultimate bearing capacity** q_{nf} , calculated as described below, by a suitable factor of safety. The **net soil pressure**, q_s , for a given permissible settlement is then calculated as explained in the next section. The lower of the two values, q_{ns} and q_s , thus determined is taken as the **allowable bearing capacity** of the soil.

1. Shear Failure Criterion:

The **net ultimate bearing capacity** \mathbf{q}_{nf} (t/m²) of a shallow foundation of breadth B (m) and depth D (m) is given as per IS:6403-1981 (Sec.5.1.2) by the following equation:

The bearing capacity factors (N's) are functions of ϕ , the angle of internal friction of the soil. The values of these factors are found for general shear failure by referring to standard tables. If subsoil conditions are such as to lead to local shear failure, the values of these factors are found for a reduced value of angle of internal friction (ϕ ') given by the equation: tan ϕ ' = 0.67 tan ϕ . The value of cohesion is also reduced to ϕ ' = 0.67 c.

The values of the other factors in the above equation for usual conditions are as tabulated below:

s _c =	1.3 1+0.2B/L 1	$d_c = 1 + 0.2 (N\varphi)^{0.5} D/B$		D _w at	G.L.	Fou'dn.Level
s _q =	1.2 1+0.2B/L 1	$d_q = d_{\gamma} = 1$ for	φ < 10 o	w =	0.5	1
$s_{\gamma} =$	0.8//0.6 1-0.4B/L 1	$d_q = d_{\gamma} = 1 + 0.1(N\varphi)^{0.5} D/B$	$\varphi > 10^{o}$	Int	terpolation	between
FOR	sq.// O Rect. STRIP	I_c , I_q , $I_\gamma = 1$ for vertical load		the	ese values	is linear.

In the present case, the representative values of cohesion \mathbb{O} and angle of internal friction (ϕ) may be obtained from the soil data given earlier. Full submergence of the soil has been assumed. The **safe bearing** capacity, q_{ns} has been obtained by dividing q_{nf} by a **safety factor**, 3.

One example of calculation of safe bearing capacity for a certain shape, depth and width of a footing is given in **Table A** on the next page. The net safe bearing capacity for the footing is entered in the last column of Table A. Calculations for other depths and widths of footings are done similarly.

The value of net safe bearing capacity (q_{ns}) calculated for each set of values of B and D is used for calculating the consolidation settlement s as explained in Sec. 2 below.

2. Settlement Criterion for Foundation on cohesive soil.

As per IS:8009(Part I)-1976, Sec. 9.2.2.2, the settlement s (in mm) is given by the equation:

$$s = \begin{bmatrix} 1000 \ H \ C_c \ log \ (1 + \Delta p/p_o \) \ \end{bmatrix} / (1 + e_o \) \lambda$$
 where
$$H = \text{thickness (in m) of the compressible layer}$$

$$C_c = \text{compression index of the soil}$$

$$e_o = \text{initial void ratio at mid-height of compressible soil layer} = \text{its m/c} \ (m) \ x \ sp. \ Gravity$$

 $p_0 = \text{initial of factive pressure at mid-height of the layer (t/m²)}$ sp. Gravity

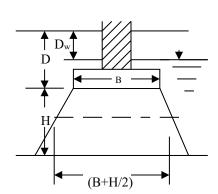
 Δp = pressure increment at the mid-height of the layer due to the foundation (t/m²).

pressure increment at the find-neight of the layer due to the foundation (viii)

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.,]

Appendix- F1

Report on Sub Soil Investigations for the proposed G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur


 λ = correction factor

If there are different layers with different compression indices and void ratios, s is calculated for each one of these and then added together to get the settlement.

The pressure increment at any plane due to the footing load may be calculated by assuming the dispersion of load at a slope of 1 horizontal to 2 vertical. Hence the load applied over a width B of a foundation (vide the Fig. below) is spread at a depth H/2 below it over a width (B + H/2).

A correction factor $\lambda=0.80$ is used as per IS Code to find the corrected settlement. If this value of corrected s is within the permissible limit specified in the Code, the corresponding value of q_{ns} is also the net allowable bearing capacity q_{na} . If not, trials give the desirued value of q_{na} . One example of this settlement analysis is given below the **Table B** in Sec. 3.

If D_w > (D+ 1.5 B/2), p_o = γ (D+1.5 B/2) t/m², otherwise, p_o = γ D_w + (γ - 1) (D- D_w + H/2) t/m²

 $D_w = \text{depth of water table below ground level}$.

D = depth of foundation

B = breadth of foundation

H = 1.5 x B = thickness of compressible soil layer in the zone of influence of the loaded foundation.

Breadth of the influence zone at the mid-plane of the compressible layer, of thickness H = (B + H/2).

In case of a rectangular or square footing a similar dispersion of load takes place along the other side of footing.

3. SAMPLE CALCULATION

Table A Calculation of Net Safe Bearing Capacity

Shape	of		F.S.=	γ , t/m^3 =		c =	ф =	Nc =	Nq =	$N_{\gamma} =$
Found	lation:	STRIP	3		1.94	2	2.8	5.84	1.29	0.22
			dq =			ı	ll	III		
D [m]	B [m]	dc	dg	С	q	Term	Term	Term	qnf	qnf /F
4	2	1.42	1	2	3.88	16.60	1.11	0.22	17.93	5.98

The net safe bearing capacity for the footing is to be seen in the last column of the above Table A. This value is checked for settlement as shown below.

Table B Calculation of Settlement

m =	0.294	Gs =	2.69	eo =	0.7909	Cc =	0.170	Dw =	0
Depth	Width	qnf /F	ро	Н	Δ p	log (1+	S [mm]	λ s mm	Remarks
D [m]	B [m]	t/m ²	t/m ²	m	t/m ²	∆p/po)	mm	mm	
4.0	2.0	6.0	5.2	3.0	3.4	0.2	62.7	50.1	OK

Hence the **net allowable bearing pressure** for a strip footing of width 2.0 m and depth 4.0 m below ground level will be 6.0 t/m².

The calculations for footings of other sizes and depths are done similarly.

Calculations of Capacity of U\R Pile for the proposed

G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

U/R Pile Capacity Calculation Control of the con												
U/R	Pile Ca	pacity Calcula	<u>ation</u>			L	D,stem	Du	No.of bulbs,n=	Qs		
						4.0	0.25	0.50	1	1.7		
	Qu =	Ap Nc cp+	AaNc c'a+	[0.5]As ca+	A's.ca'	4.0	0.25	0.50	2	2.0		
where	Ap =	area of base	of pile =	pi D ² /4		6.0	0.25	0.50	1	2.8		
	Aa =	area of annul	ar ring =	pi Du ² /4 - A	vр	6.0	0.25	0.50	2	3.4		
	As =	area of stem	= pi D(L- 1.5 (n-1)	D(L- 1.5 (n-1) Du-0.55-0.5)			0.25	0.50	1	5.1		
	As' =	area of cyl. b	et.bulbs=	pi Du 1.5(n	-1) Du	8.0	0.25	0.50	2	6.1		
aver.coh.						10.0	0.25	0.50	1	7.0		
at base			0.55) to (L+ 0.45)			10.0	0.25	0.50	2	8.3		
at bulbs, o			.55- 1.5 Du) to (L-									
on stem, c	a over	depth 0 -(L- 1	.5 Du) & (L-0.55)									
cyl. Bet. Bulbs,	ca'		Bulb dia =	2	x shaft dia							
Factor of saf	ety =	3.00										
L	D	Du	No.of bulbs, n=	Ар	Aa	As	As'	ср	c'a	ca	ca'	
m	m	m		m^2	m ²	m^2	m^2	t/m ²	t/m ²	t/m ²	t/m ²	
4.0	0.25	0.50	1	0.05	0.15	2.32	0.00	2.00	2.00	1.25		
4.0	0.25	0.50	2	0.05	0.15	1.73	1.18	2.00	2.00	1.25	1.25	
6.0	0.25	0.50	1	0.05	0.15	3.89	0.00	3.00	3.00	1.67		
6.0	0.25	0.50	2	0.05	0.15	3.30	1.18	3.00	3.00	1.67	1.90	
8.0	0.25	0.50	1	0.05	0.15	5.46	0.00	4.80	4.80	2.48		
8.0	0.25	0.50	2	0.05	0.15	4.87	1.18	4.80	4.80	2.48	3.10	
10.0	0.25	0.50	1	0.05	0.15	7.03	0.00	5.90	5.90	3.00		
10.0	0.25	0.50	2	0.05	0.15	6.44	1.18	5.90	5.90	3.00	4.20	
L	D	Du	No.of bulbs, n=	ApNc cp	AaNc ca'	[0.5]As ca	As' ca'	Qu	Qs			
m	m	m	,	t	t	t	t	t	t			
4.0	0.25	0.50	1	0.88	2.65	1.45	0.00	4.98	1.7			
4.0	0.25	0.50	2	0.88	2.65	1.08	1.47	6.09	2.0			
6.0	0.25	0.50	1	1.33	3.98	3.25	0.00	8.55	2.8			
6.0	0.25	0.50	2	1.33	3.98	2.75	2.24	10.29	3.4			
8.0	0.25	0.50	1	2.12	6.36	6.77	0.00	15.25	5.1			
8.0	0.25	0.50	2	2.12	6.36	6.04	3.65	18.17	6.1			
10.0	0.25	0.50	1	2.61	7.82	10.54	0.00	20.97	7.0			
10.0	0.25	0.50	2	2.61	7.82	9.66	4.95	25.03	8.3			
									 			
									+			
			l									

G+4, Boys' and Girls' Hostel, Educational Building and Principal-cum-Staff Quarter at Bhagalpur, DIET Bhagalpur

बिहार राज्य शैक्षणिक आधारभूत संरचना विकास निगम लिमिटेड BIHAR STATE EDUCATIONAL INFRASTRUCTURE DEVELOPMENT CORPORATION LTD.

(A Govt. of Bihar Undertaking) ISO 9001:14001;OHSAS 18001

Shiksha Bhawan, Bihar Rashtrabhasa, Parishad Campus, Acharya Shivpujan Sahay Path, Saidpur, Patna-800004 Tel. No: 0612 - 2660850 *Fax No: 0612 - 2660256

E-mail: bseidc@gmail.com * Website: http://www.bseidc.in * CIN: U80301BR2010SGC015859

पत्रांक- BSEIDC/TECH/1960 (2018- 7138

पटना, दिनांक-02/09 23

प्रेषक.

मुख्य अभियंता BSEIDC, पटना।

सेवा में,

बिहार फाउंडेशन कंसल्टेन्ट गंगा दर्शन अपार्टमेंट, फ्लैट नं०-403 सदाकत आश्रम के पश्चिम, पटना-800010

विषय:- निर्माण स्थल पर मिट्टी जाँच के संबंध में।

प्रसंगः भवन निर्माण विभाग, बिहार, पटना के पत्र सं०—120, दिनांक—31.01.2023 महाशय.

उपर्युक्त बिहार राज्य शैक्षणिक आधारभूत संरचना विकास निगम के अधीन (i) Bhagalpur, DIET Bhagalpur (ii) Gaya, DIET Gaya (iii) Sitamarhi, DIET Dumra Sitamarhi (iv) Vaishali, DIET Dighi Hajipur, Vaishali में बालिका छात्रावास, बालक छात्रावास, शैक्षणिक भवन, प्रींसीपल–सह–स्टॉफ क्वंटर के G+4 भवन निर्माण प्रस्तावित है। इस भवन निर्माण स्थल पर मिट्टी जाँच कराना है।

अतः अनुरोध है कि उपरोक्त स्थल का तीन बिन्दुओं पर आवश्यक गहराई तक प्रत्येक आवश्यकतानुसार मीटर गहराई में मिट्टी का नमूना संग्रह कर प्रतिवेदन समर्पित करें साथ ही विहित प्रपत्र में मिट्टी के भार वहन की क्षमता की गणना (Isolated एवं Pile Foundation के लिए अलग—अलग) भी Hard copy एवं Soft copy (C.D.) में समर्पित करें।

इस जाँच को इस तरह सम्पादित करें कि Transportation and Mobilization खर्च कम से कम हो। कार्य स्थल पर संपर्क व्यक्ति, कार्य से संबंधित प्राचार्य / संबंधित कार्यपालक अभियंता रहेंगे।

विश्वासभाजन (१९)४) मुख्य अभियंता BSEIDC, पटना।

Bihar Foundation Consultants, Ganga Darshan Apartment, Patna -10. [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

Appendix - G